
CSEC 793 Capstone in Computing Security
Project Report

ROS2 PREVALANCE AND SECURITY

May 19, 2020

John Lawrence
Department of Computing Security

College of Computing and Information Sciences
Rochester Institute of Technology

jbl4908@rit.edu

1 Abstract

This paper looks into the successor of the most common robotic management solution, ROS2,
to determine its security issues. In doing so, the paper begins by covering the background
and technical details on how ROS functions. Once this is complete, the vulnerabilities in
ROS2 are explored and explained. These vulnerabilities are divided into two sections: code
based and network based.

The code based vulnerabilities stem from the need to have access controls to important
documents for ROS2 functionality. As such the solutions lie in better utilizing the layers
below ROS2 in the OS level. Network vulnerabilities on the other hand are directly tied
to the functionality in ROS2 with their new DSS standard. This paper highlights the 4
main parts of the new ROS2 data exchange between Talker and Listener and the best
corresponding attack strategy for each.

This paper concludes by interpret the findings of our research and testing to determine
the current position of cybersecurity within ROS2 and, in turn, overall robotic development.
The results show that there is more concern for cybersecurity than ever before in the
robotic development space, but is limited by ease of use practices and a lack of previous
communication between cybersecurity and robotic professionals.

1

2 Introduction

The current environment of robotic frameworks is ever changing and have become more
accessible to developers. We have seen a shift from using pendants and other strict
programming requirements to more general systems much more akin to scripting. Because
of this solutions such of ROS have taken up a large portion of current robotic projects.
With the new successor ROS2 coming out the project as displayed in this paper aims to
analyze this new upcoming framework and gauge the vulnerabilities it has along with the
impact it will have on the robotic community. Using this we can accomplish the end goal
of determining an overall risk posed by deploying ROS2 in future robotic projects.

The improvement and understanding of frameworks requires the study and conclusions
of many separate analyzing parties. Through using tools to study the current deployment
of ROS an idea of the future impact ROS2 will have can be derived. Vulnerabilities can be
determined through testing with existing tools, such as packet sniffing, secure code analysis,
and risk frameworks. Thus the goal of this project is to use tools and vulnerabilities to
determine the level of security in ROS2 and the variance it can have depending on its
deployment. This will be done using many of the aforementioned tools and study along
with an in depth analysis and development of attacks against ROS2 network traffic on
various security settings.

2

3 Background

Robotic systems have been developing with the new technologies in other fields of computer
science and technology. One of the major breakthroughs has been the standardization
of robotic protocols with projects such as ROS by the Open Source Robotics foundation.
This framework in particular has gained notable traction in academia, being used by many
universities and groups such as NASA [1]. What makes ROS stand out is its adoption and
usage in industry as well, with Amazon offering a ROS solution in their AWS suite [2].

ROS is developed to support a single consolidated robot system or a distributed system.
This is due to the way it handles the authoritative server and handling tasks. The main
server, called ROScore, registers nodes which can be any device with an internet connection
and the ROS libraries. In this way, the problem of scheduling tasks is taken on by the
node which will be programmed with a specific function[3]. The node will then send any
information it generates during its operation to ROScore over a ’topic’. The topic can then
be viewed by any other node making the flow of information and tasks complete.

Figure 1: An Example of ROS Communication
[4]

Because of the scope of projects ROS has been involved with, security has become a
concern. ROS was not developed with security in mind, notably lacking encryption on
communication and authentication methods. During their review of the security in ROS
protocols, Dieber et. al stated that the changes needed to be made in order to secure ROS
would entail all modules being rewritten and recompiled[5].

The successor to ROS, ROS2, was nearing public release in 2017. In the meantime current
ROS systems had to be secured somehow and the question of legacy security support was
raised. The project SROS was released to provide basic encryption through a public key
infrastructure using X.509 certificates, something similar to what would be seen in ROS2.
This new library for ROS would ensure the remote procedure calls and communication

3

would be securely encrypted setting and is considered to have met the concerns[6].

To make improvements to both system efficiency and security the Open Source Robotics
Foundation released the first public distribution of ROS2 in December 2017. It bases its
security on the Data Distribution Service (DDS) security specification, implementing a
public key infrastructure[7]. It has two modes of operation, the default being permissive
which looks for security files but will run without them if they cannot be found. It also has
an environment argument $ROS SECURITY ENABLE which can be set to false to turn
off all added security.

The majority of security changes to ROS2 in comparison to ROS stems from the adoption
of the DDS specification. To meet the new DDS spec it functions with a UDP multi cast
over a selected group/domain[8]. This means that you can no longer have a node on a
different LAN, perhaps intended to remove having nodes connect over internet. However,
this also means there is no longer an authoritative ROScore for ROS2. The reason being
that since every node is multi casting anyway there is nothing to parse and control.

Figure 2: An Example of ROS2 Communication

DDS seeks to handle 4 relevant categories of threats: Unauthorized subscription, Unau-
thorized publication, Tampering and replay, Unauthorized access to data. To do so it
requires the providing of: Confidential data samples, integrity of data, authentication
and authorization of endpoints, message and data origin authentication, with an optional
requirement for non-repudiation[9].

For secure communication to begin through DDS the two node must first have a matching
set of ’Participant Security Info’ sent in the ParticipantBuitinTopicData topic packet
during communication[9]. The parameters for this security defining packet are provided in
the Participant Security Attributes Table. Due to this exchange occurring before security
has been established between ROS2 nodes the security of this exchange is entirely dependent

4

on pre-existing security controls unrelated to ROS2.

Member Type

allow unauthenticated participants Boolean

is access protected Boolean

is rtps protected Boolean

is discovery protected Boolean

is liveliness protected Boolean

plugin particpant attributes AttributesMask

ac participant properties PropertySeq

The controls will influence the usage of certain security control settings, such as en-
cryption and digital signatures, to accompany network communications. This network
communication uses Real-Time-Publish-Subscribe (RTPS) protocol, a specification that
includes the discovery process along with the continuation of handshakes throughout the
connection lifespan to ensure reliability.

RTPS is platform independent and as such is not constrained to being used only in OS
specific implementations. It does this by maintaining its own specific classifications of
objects on the network known as RTPS Entities and Classes. For the purposes of this paper
all legitimate nodes used during the testing can be considered RTPS Endpoints as they are
either a writer or a reader [10].

Figure 3: A diagram of the endpoints classification and attributes, some of which are shared
with the participant and entity class.

5

While the DDS and RTPS specification do go further into how communications should be
handled, this is intentionally hidden by ROS2. This is done by taking the most of the heavy
work done in the new DDS specification and sliding it into the pre-existing template of
’publisher’ and ’subscriber’ of the old ROS libraries. In doing so a ROS user can seamlessly
transition to ROS2 and the newer security controls will not constrain them [11].

While DDS, ROS2, and RTPS specifications are all intended to be platform agnostic the
developed implementations by various parties have their differences. These are recognized
by the ROS2 developers and they support a variety of ”vendors” or implementations of
DDS to be used with ROS2 [12]. These implementations create noticeable differences in
how ’heavy’ the deployment is on a system. For example, the OpenSplice implementation
is generally considered to handle large deployments the best with low latency however it
also requires 6 times as many threads as the other popular implementations provided by
Connext and FastRTPS [13]. Because of these differences certain hardware or low-level OS
attacks may present more or less risk depending on the exact implementation used.

In the coming literature review the previous analysis and study of these mechanics along
with their security impact will be presented.

6

4 Literature Review

Analysis of ROS2 has been ongoing, with the security of the new encryption algorithms
being often tested. In a paper by Jongkil Kim et al. they analyzed the handshake and
encryption used by the ROS2 implementation of DDS. According to their findings, ”the
correctness of the security protocol is verifiable” for the handshake while the library they
are using for SSL is ”currently deficient such as zeroization of secret data”[14]. Based on
these findings and the continuous work on ROS2 and ROS it is safe to say there is a further
need for review and improvement in the robotic security space.

This weakness in the OpenSSL libraries used in ROS2 was further analyzed by DiLuoffo
et al. during an analysis on the security implications of security weaknesses in layers below
ROS2. It was found that the weaknesses in OpenSSL libraries were prevalent enough that
they could be modified with no detection by ROS2, leading to what is considered secure
communication by the nodes to not be secure[15]. Furthermore, weaknesses in default file
system policy along with the usual installation location of ROS2 has certificates unprotected.
This, along with the security configuration files, can be changed without being detected by
ROS2. Giving an adversary with access to a ROS2 device the ability to substitute security
settings and credentials with their own with no detection mechanisms available from ROS2.

The threat presented to ROS2 is certainly not lost on them, as the Open Robotics
Foundation presented their own Threat Model for the ROS2 system. Their work presents
a comprehensive look into the threat actors, entry points, and vulnerabilities along with
their combinations. The dataflow used during their testing is based on the TurtleBot3
demo included with most versions of both ROS and ROS2 along with MARA to represent a
modular industrial robot. From these results they determined a total of 27 vulnerabilities,
2 exploited physically and 25 being exploited over the network [16]. Of these 6 were rated
low, 13 medium, 6 high, and 2 critical in accordance with the Robot Vulnerability Scoring
System (RVSS)[17].

Figure 4: Vulnerability Results of the ROS2 Threat Model Analysis

7

DiLuoffo et al. in a seperate paper concerning the holistic approach to ROS2 security
took a different approach to developing a threat model. In their model they defined 3
seperate adversarial models that could be used to account for most vulnerabilities. This
could be done by putting each entry point in either a Software, Cognitive, or Side Channel
adversarial model. Software includes the entry points associated with application logic
like the OS and ROS2, DDS, and DDS security drivers. Cognitive layer are entry points
concerned with the written programs themselves and how they modify received information.
Finally side channel concerns the sensors themselves and how through methods such as
transduction attacks received input can be spoofed. [18]. They deploy a variety of security
plugins to account for the vulnerabilities found during their own analysis and the threat
model created by the Open Robotics Foundation. The result was a clear loss of efficiency
seeing latency increase, throughput decrease, and average Mbps requirements increase.

Figure 5: Loss of efficiency from security plugins.

These findings do compliment the reasoning for ROS2 to not have most security enabled
by default for functionality and ease of use reasons. A solution posed by them to this
problem is taking advantage of the segmentation of domains in ROS2. This would be
done by specifying plugins per domain to match the security needs, instead of using a
one-size-fits-all domain.

The analysis and testing done in this paper will differ by focusing primarily on the network
based communication between nodes and the vulnerabilities to confidentiality, integrity, and
accessibility present. This will be gathered based on both the default deployment scenario
which lacks many of the security controls as well as a security enabled deployment that is
set to run in permissive mode. These results and recommendations will be less conceptual
than the previous work and won’t deal with having to cover all entry points such as the file
system leading to greater focus on the topic of network security.

8

5 Project Idea and Implementation

After analyzing the security of ROS before and writing a paper on its vulnerabilities as
of 2019, it was decided to look to its successor ROS2 to determine the future of security
vulnerabilities in robotic frameworks. The vulnerabilities found in ROS would be the first
elements to be analyzed for. Such vulnerabilities include plain-text messaging and a lack of
encryption between nodes and an authoritative server.

Based on these previous findings, it is reasonable to expect not all issues of ROS2 being
solved. This analysis is perhaps even more necessary as the standard for ROS2 (DDS) has
changed between ROS and ROS2. This distributed system is also now using UDP for most
communications. This lack of connection could make the transfer of information more prone
to interference. Such interference could involve replaying packets to full denial of the ROS2
service.

To analyze ROS2 properly a test range was setup using 3 hosts. 2 of these hosts would be
considered benign or legitimate ROS2 nodes using the ’dashing’ release of ROS2. They will
also have all the SROS2 libraries, which are the security addons to ROS2 that meet DDS
security standards. The last of these 3 hosts would serve as a mock attacker. The will also
be capable of downloading ROS2 ’dashing’ libraries for the purpose of writing malicious
node code. The malicious actor will be capable of listening to the communication from the
talker and aim to interfere with communications. This communication will be analyzed in
two settings. The first setting is base install, with security setting defaults being mostly
turned off. The second setting of testing will be when DDS security settings are turned on
according to the base demo settings provided by the SROS2 security team [19].

Figure 6: Topology of the test range

The settings for base install do not specify a specific group to multi cast to, security keys,
or any security strategy. For the recommended security settings it is important to note that
they differ depending on which provider of RTPS you are using. The default provider and

9

what will be used for this implementation is FastRTPS which comes standard with most
ROS2 installs with the SROS2 package. ROS2 environment variables are then set to specify
security settings and must match proper case. The variables set in this implementation are
presented in the table below.

Environment Variable Value

ROS SECURITY ROOT DIRECTORY
[Directory chosen by

administrator during keygen]

ROS SECURITY ENABLE true

ROS SECURITY STRATEGY Enforce

RMW IMPLEMENTATION rmw fastrtps cpp

The listening device will be running what is known as a ’subscriber’ node in the ROS
environment. To do so it will first setup the message type used, in this case we specify
string for ease of use. And then we specify a topic that must match the topic name the
publisher will send. From there we run the listener and wait.

The talker device will be running a ’publisher’ node. It will have its message type and topic
set to the same as the subscriber so that they are compatible. From there communications
should start broadcasting. To ensure that communications are not interrupted we may
choose to specify a UDP domain. We will go more into detail on the specifics of this
communication and its security implications in the data analysis section.

The idea for how to exploit this comes down to exploiting the lack of authentication most
likely found within this communication schema along with the lack of integrity. For this
reason, it should be possible for a malicious host to not only hear all communication but
also control it in any way they see fit.

Some attacks that will be utilized involve ARP cache poisoning, man in the middle, and
spoofed source addresses. Using these tactics we can prove that a ROS2 environment cannot
rely on the location packets are arriving or being sent to along with not being able to rely
on the data sent. This is accomplished by crafting spoofed ARP frames using scapy with
python 3. Paired with this will be attempts to craft spoofed packets in the IGMP (Internet
Group Management Protocol) sequences. These sequences occur when the node first starts
and when the node ceases operation.

The final attempted attacks will involve interrupting the data transactions between nodes.
Doing this will involve spoofing packets to ruin the integrity of the data, taking a legitimate
talkers space by either taking over it’s addresses or creating another node that copies it, and
finally by attempting to produce enough packets to limit operation of the listener through
a DoS style attack.

10

Figure 7: The Results of a Poisoned ARP Cache [20]

11

6 Testing and Experiments

In this section, describe your testing and experiment design and setup, and conduct the
testing and experiments, and generate data.

Need to explain why your experiment design will do what is supposed to do, and describe
the expected the result, and how the result may validate your ideas and/or support your
project.

The testing began by setting up two separate environment based on the implementation
standards. These two environments were differentiated primarily on the level of security
they implemented into ROS2. Our first environment, hereby called environment 1, was a
base install of ROS2 on two machines with a machine in the middle to represent the attacker
[Fig 6]. Because of this, it was expected for this environment to lack critical security controls
and methodologies compared to environment 2. Environment 2 was a ROS2 install on two
machines with a machine in the middle as well [Fig 6]. The primary differences were the
addons known as SROS2 (Secure ROS2) [19] being implemented on the two legitimate ROS2
nodes. The settings were configured to create encrypted communication using a public key
infrastructure along with the selection of heading configuration settings as discussed in the
background and implementation.

The goal of the initial testing phase was to inspect both the base code used in most
ROS2 nodes along with capturing the expected traffic respective to the two environments.
In doing so we could understand the whole process by which security can be tested, both
on the hosts and on the network.

6.1 ROS2 Code Security

The core of all ROS2 systems is the Talker-Listener system, where a node generally will be
focused on either producing and transmitting information or listening and interpreting that
information for a various robotic subsystem to use. The Talker is usually a sensor of some
sort, such as a camera, that is either capable of its own computational programming or is
connected to a computer to perform that. A Talker node file is generally broken up into
2 sections, the talker class and the main function. The talker class is where most of the
defining features of the system are made and the point where attackers would most likely
want to modify.

Talker Element Features

Class Talker(Node)
Functions:
init (self)

timer callback(self)

main(args) Initialize Talker node and ’spin’ it up.

By modifying where the init is pointing to and what data type it is using the system
could be entirely modified to produce spoofed values quickly. Because the key is created

12

before running the code and no integrity check is made, this leads to a possible vulnerability
in integrity.

The Listener is comparatively less integral to the overall system, being made up of similar
elements but with less settings and operations inside of them. Furthermore it is a single end
node which produces less impact than the producing Talker that sends to many end nodes.

Element Features

Class Listener(Node)
Functions:
init (self)

chatter callback(self)

main(args) Initialize Listener node and ’spin’ it up.

For this reason should an organization setup security levels for file access the Talker
should be considered to have a higher security requirement for access than the Listener files.
This will of course depend on what robotic subsystem the Listener is interpreting for.

The code did not have to be changed between the two environment for testing. For this
reason the security concerns for this section can be considered SROS agnostic and are more
reliant on the layers below it (such as physical and OS security) for controls.

6.2 ROS2 Network Security

The differences in testing ROS and ROS2 on the basis of security are made clear when
analyzing their network security. This is due to the shift towards the DDS security
specification which brought many new protocols to replace the older and proprietary ROS
protocols. The ROS team likes to maintain however that the Talker-Listener system is still
present which is partly true for those who only work on the code level.

6.2.1 Attacks Not Requiring Key Interception

To begin we created environment 1 and setup a Wireshark capture inline between the two
devices. Environment 1 is the base install, with no added SROS2 libraries to augment ROS2
network communications. This capture was started before both the Talker and Listener
began running in order to catch the initial broadcast messages. The specific packet we are
looking for is an IGMP join request as specified by the standard.

This packet indicates that a node has joined a group and is ready to start receiving
messages from all talkers in that group. It is not encrypted in either environment 1 or 2 as
it occurs before key setup and verification between the nodes and as such is always able to
be viewed. This creates a vulnerability from relay attacks, specifically those which slightly
modify the packet to have other addresses join the group against intended use cases.

While the join IGMP packet in of itself can be seen as a vulnerability in both environments
it also produces a situation that can be taken advantage of by malicious actors listening on
the network. This opportunity lies in the ARP frames sent out shortly after an IGMP join
packet is sent.

13

Figure 8: A standard ROS2 IGMP join group packet

Figure 9: ARP requests by legitimate ROS2 talker and listener

Basing the range of time taken for these ARP frames to occur from our trials, this gives
an attacker 2-4 seconds to send their own ARP poisoning attack before the nodes begin.
The knowledge needed to successfully perform this attack requires just the Listener and/or
Talker IP. The IP information can be gathered without needing to query the machines by
listening for IGMP join requests. The Talker and Listener must publish one to join the
network and it includes their IP. From there an attacker sends gratuitous ARP requests
saying the MAC address for the IPs is at the attackers machine MAC address. From there
the attacker has successfully created a Man-in-the-Middle style attack and controls the flow
of packets between Talker and Listener.

An attack only available to attackers in an environment like environment 1 is IGMP
leave spoofing. The attack is nearly identical to IGMP join spoofing as mentioned earlier,
requiring only a few bits of a join packet to be modified in order to change it to a leave
packet. In doing so an attacker can continuously block a listener from joining by sending a
crafted leave packet as soon as a join packet is found.

The reason this is not as available to environment like environment 2 is because the leave
will be encrypted with the key. As mentioned before the join is not encrypted for either
environment as the key setup and verification. had not occurred yet. Since the leave occurs
after an attacker will need to acquire the key first before.

Finally, in environment 1 all RTPS traffic is unencrypted including all data transmission
between the Talker and Listener. Because of this even the data portion of the exchange
is just as susceptible to confidentiality and integrity vulnerabilities as the join and leave
IGMP portion.

14

Figure 10: A standard ROS2 IGMP join leave packet

Figure 11: Environment 1 Data Exchange Packet

6.2.2 Attacks Requiring Key Interception

According to the SROS2 guides and documentation there is no native means of transferring
keys between remote listener and talkers. Their recommendation in the guides for Linux
mentions using SCP to transfer the keys. This of course begs the question of if SCP is a
secure enough channel for key exchange why not use it also to secure data transmission?
Regardless, for environment 2 we will assume key exchange is done using SCP as it is the
most often recommended protocol.

For these attacks we will not cover how key interception or acquisition is performed and
will base the attacks on if you already have the key.

15

“Then, we need to copy some keys to oldschool (listener node) to allow SROS 2
to authenticate and encrypt the transmissions. Since the keys are just text files,
we can use scp to copy them”

Figure 12: SROS 2 Linux Instructions on Sharing Keys [19]

The first attack this opens up is the IGMP leave attack mentioned earlier for environment
1. To do so easily you can capture the join IGMP packet which is still unencrypted in
environment 2. Modify the 41st byte of the join packet by increasing it by 1 and then
modify the 47th byte by decreasing it by 1. This produces a leave packet for that node.
Then encrypt it with the key and send over the existing RTPS connection.

Join Packet
0000 01 00 5e 00 00 16 00 0c 29 6e 28 34 08 00 46 c0
0010 00 28 00 00 40 00 01 02 f9 f8 0a 00 00 01 e0 00
0020 00 16 94 04 00 00 22 00 e9 fd 00 00 00 01 04 00
0030 00 00 ef ff 00 01 00 00 00 00 00 00

Leave Packet
0000 01 00 5e 00 00 16 00 0c 29 6e 28 34 08 00 46 c0
0010 00 28 00 00 40 00 01 02 f9 f8 0a 00 00 01 e0 00
0020 00 16 94 04 00 00 22 00 ea fd 00 00 00 01 03 00
0030 00 00 ef ff 00 01 00 00 00 00 00 00

Figure 13: Example of a Join packet and it’s corresponding Leave packet

If you want to use a single join packet to produce a leave packet for any IP you can do
so by modifying the hex between bytes 27-30. This range contains the IP address of the
source of the IGMP packet, which in Fig. 13 is 10.0.0.1. Being able to successfully perform
this attack allows an attacker to control which nodes are allowed to operate on the ROS2
system in an SROS encrypted system.

16

7 Conclusions

In this paper we analyzed the security stance of of ROS2 and covered the implications it
would have for the future relationship between robotics and cybersecurity. Based upon the
findings of this paper along with previous papers in this area of research the concept of
security is becoming more seriously consider than in previous robotic framework projects.

This new level of consideration has not yet translated into sufficiently secure systems
however, with multiple weak spots in implementation that would greatly benefit from a
security control. Even without a security control a standard policy on important security
processes such as key exchange would be a good first step.

Most of the security issues found within this paper stem from the new structure of network
communications due to the adoption of the DSS standard. The figure below summarizes
both the structure and the corresponding attack strategy for each section.

Figure 14: ROS2 Exchange and Attack Structure

The key source of these vulnerabilities can be tied to the ROS2 philosophy of get it to
work fast and easy upon deployment. This certainly differentiates itself in a good way from
other robotic frameworks, however as demonstrated in the paper it has security related
side-effects.

By The Open Robotics Foundation conducting a vulnerability assessment of the ROS2
framework in late 2019 they have shown a motivation to begin taking cybersecurity with
a higher level of concern. By partnering with external security initiatives both with and
without robotic focuses it is likely they can reduce much of the cybersecurity risk posed to
users of ROS2 and in turn better secure the future of robotic development.

17

7.1 Key Findings

• ROS2 reworks and standardizes it’s security stance with adoption of DSS standard.

• Currently ROS2 does not include access control settings for ROS2 node code.

• Based upon both this paper’s testing and The Open Robotic Foundations testing ROS2,
the standard for robotic frameworks, contains multiple high severity vulnerabilities.

• ROS2 uses a PKI infrastructure for encryption, but does not have a standard policy
for key distribution

• Through spoofing, cache poisoning, and interception ROS2 has multiple and easy
methods for attacking the system’s CIA triad (Confidentiality, Integrity, and Avail-
ability)

• ROS2 is ultimately a good step however with new efforts being made to follow modern
security standards and perform vulnerability assessments.

18

8 Acknowledgment

I thank my project advisors Professor Ziming Zhou and Professor Sumita Mishra for their
support and guidance during the production of this paper. I would like to thank the
Rochester Institute of Technology Libraries for their assistance in the Literature Review
and Background portion of this paper. Finally I would like to thank my family for their
continued support in my academic endeavors.

19

References

[1] B. Gerkey, “Ros running on iss.” [Online]. Available:
https://www.ros.org/news/2014/09/ros-running-on-iss.html

[2] “Announcing aws robomaker: A new cloud robotics service,” 2018. [Online].
Available: https://aws.amazon.com/about-aws/whats-new/2018/11/announcing-aws-
robomaker-a-new-cloud-robotics-service/.

[3] I. Nielsen, Q.-V. Dang, G. Bocewicz, and Z. Banaszak, “A methodology for implemen-
tation of mobile robot in adaptive manufacturing environments,” Journal of Intelligent
Manufacturing, vol. 28, no. 5, pp. 1171–1188, 2017.

[4] V. Mayoral, “Ros technical overview,” Jun 2014. [Online]. Available:
http://wiki.ros.org/ROS/Technical Overview

[5] B. Dieber, B. Breiling, and S. Rass, “Security for the robot operating system,” Re-
searchGate, Oct 2017.

[6] R. White, H. Christensen, and M. Quigley, “Sros: Securing ros over the wire,in the
graph, and through the kernel,” HUMANOIDS 2016 Workshop: Towards Humanoid
Robots OS, Nov 2016. [Online]. Available: https://arxiv.org/pdf/1611.07060.pdf

[7] K. Fazzari, “Ros 2 dds-security integration,” Oct 2019. [Online]. Available:
https://design.ros2.org/articles/ros2 dds security.html

[8] “Overview of ros 2 concepts,” Feb 2020. [Online]. Available:
https://index.ros.org/doc/ros2/Concepts/Overview-of-ROS-2-concepts/

[9] “Dds security specification version 1.1,” Jul 2018. [Online]. Available:
https://www.omg.org/spec/DDS-SECURITY/1.1/PDF

[10] “The real-time publish-subscribe protocol (rtps) dds interoperability wire protocol spec-
ification version 2.2,” Sep 2014. [Online]. Available: https://www.omg.org/spec/DDSI-
RTPS/2.2/PDF

[11] D. Thomas, “Ros 2 middleware interface,” Sep 2017. [Online]. Available:
http://design.ros2.org/articles/ros middleware interface.html

[12] “Ros 2 and different dds/rtps vendors,” Feb 2020. [Online].
Available: https://index.ros.org/doc/ros2/Concepts/DDS-and-ROS-middleware-
implementations/

[13] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the performance of ros2,” Proceedings
of the 13th International Conference on Embedded Software - EMSOFT 16, 2016.

20

[14] J. Kim, J. M. Smereka, C. Cheung, S. Nepal, and M. Grobler, “Security
and performance considerations in ros 2: A balancing act,” Commonwealth
Scientificand Industrial Research Organization, Sep 2018. [Online]. Available:
https://arxiv.org/pdf/1809.09566.pdf

[15] V. DiLuoffo, W. R. Michaelson, and B. Sunar, Credential Masquerading and OpenSSL
Spy: Exploring ROS 2 using DDS security, 2019.

[16] “Ros 2 robotic systems threat model,” Oct 2019. [Online]. Available:
https://design.ros2.org/articles/ros2 threat model.html

[17] V. M. Vilches, “Towards an open standard for assessing the severity of robot security
vulnerabilities, the robot vulnerability scoring system (rvss),” Alias Robotics, Sep 2019.
[Online]. Available: https://arxiv.org/pdf/1807.10357.pdf

[18] V. DiLuoffo, W. R. Michaelson, and B. Sunar, “Robot operating system 2: The needfor
a holistic security approach torobotic architectures,” International Journal of Advanced
Robotic Systems, 2018.

[19] “Try sros2 in linux,” Nov 2019. [Online]. Available:
https://github.com/ros2/sros2/blob/master/SROS2Linux.md

[20] C. Sanders, “Understanding man-in-the-middle attacks - arp cache poisoning (part 1),” Sep
2017. [Online]. Available: http://techgenix.com/understanding-man-in-the-middle-attacks-
arp-part1/

21

